Inference in Hybrid Bayesian Networks Using Mixtures of Gaussians

نویسنده

  • Prakash P. Shenoy
چکیده

The main goal of this paper is to describe a method for exact inference in general hybrid Bayesian networks (BNs) (with a mixture of discrete and continuous chance variables). Our method consists of approximating general hybrid Bayesian networks by a mixture of Gaussians (MoG) BNs. There exists a fast algorithm by Lauritzen-Jensen (LJ) for making exact inferences in MoG Bayesian networks, and there exists a commercial implementation of this algorithm. However, this algorithm can only be used for MoG BNs. Some limitations of such networks are as follows. All continuous chance variables must have conditional linear Gaussian distributions, and discrete chance nodes cannot have continuous parents. The methods described in this paper will enable us to use the LJ algorithm for a bigger class of hybrid Bayesian networks. This includes networks with continuous chance nodes with non-Gaussian distributions, networks with no restrictions on the topology of discrete and continuous variables, networks with conditionally deterministic variables that are a nonlinear function of their continuous parents, and networks with continuous chance variables whose variances are functions of their parents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Stochastic Pert Networks Exactly Using Hybrid Bayesian Networks

In this paper, we describe how a stochastic PERT network can be formulated as a Bayesian network. We approximate such PERT Bayesian network by mixtures of Gaussians hybrid Bayesian networks. Since there exists algorithms for solving mixtures of Gaussians hybrid Bayesian networks exactly, we can use these algorithms to make inferences in PERT Bayesian networks.

متن کامل

Importance Sampling for General Hybrid Bayesian Networks

Some real problems are more naturally modeled by hybrid Bayesian networks that consist of mixtures of continuous and discrete variables with their interactions described by equations and continuous probability distributions. However, inference in such general hybrid models is hard. Therefore, existing approaches either only deal with special instances, such as Conditional Linear Gaussians (CLGs...

متن کامل

Mixtures of Polynomials in Hybrid Bayesian Networks with Deterministic Variables

The main goal of this paper is to describe inference in hybrid Bayesian networks (BNs) using mixtures of polynomials (MOP) approximations of probability density functions (PDFs). Hybrid BNs contain a mix of discrete, continuous, and conditionally deterministic random variables. The conditionals for continuous variables are typically described by conditional PDFs. A major hurdle in making infere...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Inference in Hybrid Bayesian Networks with Nonlinear Deterministic Conditionals

To enable inference in hybrid Bayesian networks containing nonlinear deterministic conditional distributions using mixtures of polynomials or mixtures of truncated exponentials, Cobb and Shenoy in 2005 propose approximating nonlinear deterministic functions by piecewise linear ones. In this paper, we describe a method for finding piecewise linear approximations of nonlinear functions based on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1206.6877  شماره 

صفحات  -

تاریخ انتشار 2006